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Abstract

Numerical studies of combined free and forced convection through a seven-rod bundle in a circular shell in the
horizontal con®guration are reported in the paper. Each of the six peripheral circular rods has been modelled by an

equivalent curved trapezium. The model has been veri®ed to corroborate experimentally measured transport rate
values. Buoyancy induces secondary motions in the transverse direction over the forced axial ¯ow. The secondary
velocities reduce the through-¯ow rate at a given impressed pressure gradient. The friction factor is consequently

increased. The change in fRe is perceptible for Gr de®ned on the rod radius more than approximately 103, whereas
Nu increases monotonically with Gr. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The study of mixed convection in a horizontal bun-

dle is beset with complexities due to the fact that the

buoyancy acts in a direction transverse to the through-

¯ow. Even for a fully developed situation, buoyancy

introduces non-zero transverse velocity components,

ordinarily known as secondary velocities and the ¯ow

®eld becomes three-dimensional.

The interacting thermal±hydraulic ®elds become

extremely complex when more than one heated body

are present inside a shell. The buoyant ¯ow from the

lowermost surface sweeps over the upper ones which

are also sources of additional transverse velocities. The

objective of the present study is to analyse the ¯ow

and temperature ®elds in a bundle of seven heated

rods contained in an adiabatic circular shell. The ge-

ometry replicates small heat exchangers and can be

imagined to simulate a nuclear reactor of CANDU de-

sign.

Although very little is reported in the literature on

the geometry of the present interest, the information

available on concentric annuli are of relevance.

Kaviany [1] reported a numerical solution of laminar

fully developed combined convection in a horizontal

concentric annulus of radius ratio 1.25 with a constant

heat ¯ux inner wall and an adiabatic outer shell. The

results showed changes in lateral ¯ow structures from

a single to multiple cells as the Rayleigh number was

increased. Nieckele and Patankar [2] carried out a

similar study but for a wide range of radius ratios

varying from 1.5 to 5.0. The study of mixed convection

in horizontal annuli was preceded by that in plain

tubes and most of these studies have been cited in [2].

Warrington and Crupper [3] studied experimentally

the free convection in a ®xed array of four isothermal

cylinders placed in an isothermally cooled cubical

enclosure for both horizontal and vertical orientations.

It was observed that the vertical con®guration con-

vected less heat than the horizontal one. A numerical
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study of free convection of air around two horizontal,

di�erentially heated cylinders con®ned to an adiabatic
circular enclosure was reported by Ho et al. [4]. They
concluded a strong dependency of the ¯uid ¯ow struc-
ture and heat transfer characteristics on the Rayleigh

number, the inclination angle and the gap between the
cylinders. It is believed that the present study of com-
bined convection will lead to further information on

the interacting velocity and temperature ®elds in a
complex geometry.

2. Physical model

The seven-rod bundle in a circular shell is depicted
in Fig. 1. The co-ordinate system and the correspond-
ing velocity components are marked in the ®gure. The

rods are under uniform heat ¯ux condition, whereas
the shell is adiabatic. The r, y grid lines will intersect
the surfaces of each of the six peripheral rods non-or-

thogonally. In order to avoid the associated complex-
ities, the circular geometry of each of the six peripheral
rods has been replaced by equivalent curved trapezoid

maintaining the hydraulic diameter and the spacings
between the rods (pitch) of the actual bundle. The size
of the trapezoid was chosen by imposing an additional

condition that the sums of the opposite sides of the

trapezoid are equal. These yielded

Nomenclature

Af ¯ow area; A�f � Af=ri

b radial length of the trapezia, Fig. 1; b� � b=ri

Dh hydraulic diameter; D�h � Dh=ri

f Fanning's friction factor; f �
�ÿ@p=@z�Dh=�2r �w 2�

f0 forced ¯ow value of f

g acceleration due to gravity
Gr Grashof number; Gr � �gbqr4i �=�kW 2�
�h bundle average heat transfer coe�cient

k thermal conductivity
Nub bundle average Nusselt number; Nub � �hDh=k
Nub0 forced convection value of Nub

P pitch, Fig. 1; P � � P=ri

p pressure
�p cross-sectional average of p
Ph heated perimeter; P �h � Ph=ri

Pr Prandtl number
q heat ¯ux
r radial co-ordinate; r� � r=ri

ri radius of inner rods
ro radius of outer shell; r�o � ro=ri

Re Reynolds number; Re � �wDh=W

Re ' Reynolds number; Re 0 � �wri=W
T temperature; T � � �Tÿ Tb�=Tref

Tb ¯uid bulk temperature
�Tr average surface temperature of seven rods
Tref reference temperature; Tref � qri=k
u radial velocity; u� � u=�W=ri�
v angular velocity; v� � v=�W=ri�
w axial velocity; w��w=�r 2i �ÿd �p=dz�=m�
�w cross-sectional average value of w

z axial co-ordinate; z� � z=�Re 0ri�

Greek symbols
b volumetric co-e�cient of thermal expansion

m dynamic viscosity
W kinematic viscosity
f subtended angle of the trapezia, Fig. 1

c stream function; c� � c=W
O vorticity about the z-axis; O� � O=�W=r 2i �
y angular co-ordinate

Superscript
� dimensionless quantity

Fig. 1. Physical model of seven rods in a circular shell.
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6b�2 � 12A1b
� ÿ �A2 ÿ A1A3 � � 0 �1�

and

f � b�=P � �2�
where A1 � �r�2o ÿ 7�=�r�o � 7�, A2 � p�r�2o ÿ 1�, A3 �
p�r�o � 1�:
The solution of Eqs. (1) and (2) for b� and f deter-

mines the size of the trapezoid, Fig. 1.
The heated perimeter and the through-¯ow area are

modi®ed to

P �h � 2p� 24b� �3a�

A�f � p
ÿ
r�2o ÿ 1

�ÿ 6b�2 �3b�

Forced convection calculations carried out on the basis
of the present model for r�o � 4:0, P � � 2:70 and for
r�o � 5:5, P � � 3:64; when compared with literature in-

formation [5,6]; indicated agreement of the fRe within
1% and Nu within 7%.
An alternate model of equal ¯ow area and minimum

deviation in the heated perimeter also yielded agree-
ment within similar limits.
The equal hydraulic diameter modelling was adopted

for the ¯ow and temperature ®eld computation of the
present geometry of r�o � 4:54 and P � � 2:62: The
heated perimeter of the model becomes 4.11% higher
than that of the true geometry.

3. Analysis

The ¯ow and temperature ®elds are considered axi-
ally fully developed. However, transverse velocity com-

ponents exist due to buoyancy e�ects. The transverse
pressure gradients from r and y momentum equations
were eliminated by cross di�erentiations to yield the

transport equation on O, the vorticity about the z-axis,
where

O � @v

@r
� v

r
ÿ 1

r

@u

@y
�4�

Eq. (4) when expressed in terms of stream-function
yields

r 2c � ÿO where the operator

r 2 � @ 2

@r 2
� 1

r

@

@r
� 1

r 2
@ 2

@y 2

All the four dimensionless governing equations are
elliptic and have the general form

C
Df

Dt
� r 2f� F where

D

Dt
� u�

@

@ r�
� v�

r�
@

@y

C and F for the di�erent equations are tabulated
below.

Equation f C F

Vorticity-
transport

O� 1 Gr

�
cos y
r�

@T �

@y
� sin y

@T �

@r�

�
�5�

Stream-

function

c� 0 O� �6�

z-Momentum w� 1 1 �7�

Energy T � Pr ÿw
�

�w�
P �h
A�f

�8�

The average axial velocity is given by

�w� � 1

A�f

�
A�

f

w� dA�f �9�

While arriving at Eq. (7), it was assumed that @p=@z in
the z-momentum equation equals d �p=dz, where �p is the
cross-sectional average of p, and this has been shown

to be valid for Gr=Re 2 < 1 [2]. Thermally developed
¯ow with uniform heat ¯ux condition yielded @T �=@z�

�dT �b=dz
��P �h=�Pr � A�f � in the energy equation.

4. Boundary conditions

The coupled governing equations were solved satis-
fying the following conditions on the solid boundaries

and the symmetry lines.

Central rod: u� � v� � w� � c� � 0, O� � ÿ@
2c�

@ r�2
and

@T �

@ r�
� ÿ1 �uniform heat flux�

Outer shell: u� � v� � w� � c� � 0, O� � ÿ@
2c�

@ r�2
and

@T �

@ r�
� 0 �adiabatic�

Symmetry lines �y � 0 and p�:

@c�

@y
� @w�

@y
� @T �

@y
� c� � O� � 0
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Peripheral rods

Surface 12: u� � v� � w� � c� � 0, O� � ÿ@
2c�

@r�2
and

@T �

@r�
� �1

Surface 43: u� � v� � w� � c� � 0, O� � ÿ@
2c�

@r�2
and

@T �

@r�
� ÿ1

Surface 14: u� � v� � w� � c� � 0, O� � ÿ 1

r�2
@ 2c�

@y 2

and
@T �

@y
� �1

Surface 23: u� � v� � w� � c� � 0, O� � ÿ 1

r�2
@ 2c�

@y 2

and
@T �

@y
� ÿ1

5. Solution

The ®nite di�erence forms of each of the governing
equations were solved by Successive Over Relaxation
(SOR) technique satisfying the aforementioned bound-
ary conditions. The salient features are enumerated

below.

1. Convective terms in Eqs. (5) and (8) were expressed
using upwinding scheme.

2. A grid independence test was carried out for pure
forced convection condition with uniform grid sizes
of 46� 30, 46� 60 and 92� 60 in the r and y direc-

tions. The corresponding bundle average fRe and
Nu values were 21.140, 24.534, 24.501 and 1.644,
1.529, 1.539, respectively. A grid size of 46� 60 was

chosen for the mixed convection solution to opti-
mise between the accuracy and computation time.

3. Relaxation factors were varied from 0.6 to 1.8 for
Gr decreasing from 106 to 0.

4. Average axial velocity, Eq. (9), was obtained by
trapezoidal averaging of the nodal values weighted
by the respective areas at every iteration cycle.

5. Temperatures on the solid surfaces were evaluated
by one-sided second-order ®nite di�erence ex-
pressions of the respective thermal boundary con-

ditions.
6. The vorticity on the solid surfaces reduces to

O�w � ÿ2c�n=Dh�2, where c�n is the value of c� at the

neighbouring node and Dh� is the corresponding
grid size.

7. The individual equations were converged to 0.01%.
The solution was progressed till the wall vorticity
and the wall temperatures were converged to

0.001% between two consecutive cycles of iteration
where one cycle consists of solution of Eq. (5) for
O�; Eq. (6) for c� and u�, v� from c�; Eq. (7) for

w�; and Eq. (8) for T �:

6. Experiments

Numerical results have been generated for the details

of the ¯ow and temperature ®elds in addition to the
transport rate values. The appropriateness of the geo-
metrical modelling was sought by verifying salient in-

formation against experiments in a seven-rod
horizontal bundle.
The experimental set-up consisted of three identical

test sections, each comprising of seven rods, 12 mm
OD and 1200 mm long, contained in a 54.5 mm ID
and 4 mm thick plexiglass circular shell. The rod and
shell arrangement o�ered a r�o of 4.54 and a P � of

2.62. The details of the set-up, instrumentation and
transport phenomena in the vertical legs have been
reported in Mohanty et al. [7]. The same set-up was

used to measure the average transport rate values in
the horizontal bundle. Each of the rods was, in fact, a
stainless steel tube with imbedded heating elements

and thermocouples. Separate, but equal, electric power
was fed to each rod simulating uniform heat ¯ux con-
ditions.

Experiments were carried out at three Re values of
565, 856 and 1275; while the Gr, based on the rod
radius, was varied from 1.7 � 102 to 2.2 � 103. The
heat transfer rate measured at a given Re was normal-

ised with respect to the corresponding forced convec-
tion value, Nub=Nub0: Numerical results for the
experimental geometry are compared with the

measured values in Fig. 2. The good agreement
observed vindicates that the geometric modelling
through substituted trapezia is reproducing the gross

transport rate values. Details of the ¯ow and tempera-
ture ®elds were then studied numerically and the
salient results are discussed below.

7. Results and discussions

The dimensionless conservation equations are inde-
pendent of Re and the numerical results were gener-
ated for Gr varying from 0 to 106 and Pr � 0:71: The
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pure forced convection values are obtained as fRe0 �
24:534 and Nub0 � 1:529 for Gr � 0:

7.1. Velocity components

Buoyancy induces the radial and angular velocity

components, u� and v�, over the forced axial com-
ponent, w�:
The variations of v� with r� for di�erent angular lo-

cations i.e. y � 30, 90 and 1508 have been presented in
Fig. 3 for Gr � 106: The zero velocity line in the
middle is due to the presence of the peripheral rods.

The pro®les in the gap between the central and the
peripheral rods are spatially periodic. The ¯uid near

the hot central rod rises along it, identi®ed by decreas-
ing y, causing the negative loop. The buoyant ¯ow

returns along the inner side (surface 12, Fig. 1) of the
peripheral rods resulting in the positive loop.
The angular velocity variations between the periph-

eral rods and the outer shell are explained in the same

manner. The ¯uid here rises along the outer side (sur-
face 34) of the heated peripheral rods and comes down
along the adiabatic outer shell. Note that the pro®le in

the second gap for y � 1508 has two negative loops
separated by a relatively large positive loop. This is
due to the fact that the ¯uid there rises along the outer

side of the peripheral rod as well as the shell, resulting

Fig. 2. Buoyancy e�ects on bundle average Nusselt number, Pr � 0:71; comparison with theory.

Fig. 3. Angular velocity pro®les at various angles. Fig. 4. Radial velocity pro®les at various angles.
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in the two negative loops and comes down through the
middle of the gap and, hence, the positive loop.

The pro®les for the radial component of velocity, u�

are plotted in Fig. 4 for the identical Gr and y values
of Fig. 3. Unlike v�, the radial component is distin-

guished by single velocity cups. Furthermore, the vari-
ation for y � 308 is all positive and opposite to those
for y � 90 and 1508. Fluid from the lower zones, e.g.

y � 90 and 1508, move inward from the outer shell to
the heated rods, identi®ed by decreasing radius and,
therefore, negative values; whereas in the upper

portion of the bundle, e.g. y � 308, the ¯uid moves
away from the rod resulting in the positive values. We
also note by comparison with Fig. 3 that the radial vel-
ocity is about an order of magnitude lower than the

angular velocity.
The e�ects of buoyancy on the axial velocity pro®les

have been shown in Figs. 5(a) and (b) for two angular

locations of y � 0 and 1808 i.e. upper and lower verti-
cal symmetry lines. With increasing Gr, the peaks are

observed to decrease, thereby reducing the through-
¯ow rate for the same impressed axial pressure gradi-

ent. The pro®les at y � 08 shift toward the central rod
with increase in Gr, whereas those at y � 1808 shift
toward the shell. This may be explained by the fact

that the secondary ¯uid adjacent to the y � 08 line
moves towards the central rod, Fig. 6, thus pushing
the axial component; while the direction of secondary

¯ow adjacent to y � 1808 line is outwards and, hence,
the corresponding shifting.

Fig. 6. Isotherms and streamlines in a seven-rod bundle.Fig. 5. Buoyancy e�ects on axial velocity pro®les.
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7.2. Isotherms and streamlines

The recirculating secondary ¯ows in the r, y plane

generated due to buoyancy may be observed in Figs.

6(a) and (b). The isotherms are drawn on the left half

and the streamlines on the right. Results for only two

values of Gr � 103 and 106 are presented here.

In the spaces between the symmetry lines and the

adjacent rods, the buoyant ¯ow moves along the

heated surface 32 on the lower rod and along surface

14 on the upper rod to return along the cooler zones

near the symmetry lines. The ¯ow direction in both

these zones is counterclockwise. On the other hand,

clockwise streamlines are noted around the middle rod

at y � 908:
With increasing buoyancy, more number of loops

are formed, Fig. 6(b) for Gr � 106: This implies that

buoyancy causes increased mixing and, hence, higher

Nu values, Fig. 2.

The isotherm values on the left half of the ®gures

may be noted. The hottest zone occurs near the top of

the central rod. The dimensionless temperature

decreases as one proceeds to higher y values resulting

with T � < 0 near the bottom of the shell. A negative

T � means that the local ¯uid temperature is less than

the bundle average bulk temperature. This should be

of no surprise, because the dimensionless bulk tem-

perature has to be zero by de®nition, averaging

between positive and negative values. Hence, a nega-

tive rod temperature does not restrict the rod to lose

heat to the local ¯uid which is at a still lower tempera-

ture.
Note that the highest T � values decrease with

increase in Gr. This is so because the reference tem-

perature Tref � qri=k is also Gr dependent. However,
the true temperature increases with Gr. The isotherms
intersect the shell orthogonally due to the adiabatic

condition, and also the vertical symmetry lines because
of angular symmetry.

7.3. Transport rates

The bundle average transport rates i.e. fRe and Nu
can be written as

fRe � D�2h

2 �w�
�10�

and

Nub � D�h
�T
�
r ÿ T �b

�11�

The surface temperature averaged over all the seven
rods, �T

�
r and the average axial velocity, �w� were deter-

mined numerically while the T �b is zero by de®nition.

The variations of transport rates over their pure
forced ¯ow values are plotted in Fig. 7. The observed
trends are obvious from the previous discussions. With

increasing Gr, through-¯ow decreases and consequently
fRe increases. However, the increase is perceptible only
beyond a Gr value of about 103. In the experiments

Fig. 7. Buoyancy e�ects on bundle average transport rates.
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also, no measurable change was noticed in the Gr
range of 1.7� 102 to 2.2� 103.

The bundle average Nu, on the other hand, increases
continuously with Gr as was presented in Fig. 2. Vari-
ations over a wider range are plotted in Fig. 7.

8. Conclusions

We modelled the circular geometry of the six periph-
eral rods by equivalent curved trapezoid. The forced

convection transport rate values were found to be
unchanged. The model a�orded computational conven-
ience through orthogonal intersections. The subsequent
numerical solution helped in studying the ¯ow and

temperature ®elds. The highest temperature occurs at
the top of the central rod. Increasing buoyancy
decreases bulk ¯ow rate and is re¯ected through

increased friction at a given impressed axial pressure
gradient. Buoyancy induced recirculating ¯ow cells
increase mixing, leading to higher heat transfer rate.
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